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Simple formulae are developed for modelling transient diffusion in membranes, 
including composite laminates. The formulae consist of the lead terms in “early-time” 
series solutions to the governing differential equations, which converge with fewer 
terms as time approaches zero. Because the truncated solutions are quite accurate over 
substantial ranges of time, they facilitate the determination of physical parameters from 
experimental data. 
 
1. Introduction 
When the diffusion coefficient, D, of a permeating species is essentially constant, it and 
the permeant’s solubility may be determined by reconciling experimental data with a 
solution to the governing differential mass balance, i.e.: 
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The initial and boundary conditions, which depend on the nature of the experiment, 
typically conform to the following template:  
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Fitting of parameters to data is facilitated by closed-form solutions to Eq. 1. The latter 
are derivable when the boundary conditions are linear – i.e., when the α’s and β’s in 
Eqs. 2a and 2b are constants. In the case of simple permeation (α0, αL, βL, k, fi(x) = 0; 
β0 = C0), the solution (Crank, 1975) is: 
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It follows that the mass permeated per unit membrane area is: 
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Figure 1, in which the solid line is based on Eq. 4, illustrates the distinctive permeation 
“time lag”: an asymptotically straight line relates MP/C0L to Dt/L2; according to Eq. 4, 
the asymptote’s intercept, Dtlag/L2, is 1/6. Thus, D may be inferred from experimental 
data by plotting MP vs. t, locating tlag and equating D with L2/6tlag; C0 follows from the 
asymptotic (steady-state) slope, DC0/L. 
 
The considerable convenience afforded by Eq. 4 is undercut when permeation is very 
slow, because  determining tlag then requires very long experiments. Furthermore, using 
Eq. 4 to acurately calculate MP at earlier times requires increasing numbers of series 
terms; the number approaches infinity as time approaches zero. Thus, Eq. 4 may be 
deemed a “long-time solution” and an “early-time solution” is desirable. 
 
2. Early-Time Permeation Analysis 
 
A particularly useful tool for deriving series solutions that require fewer terms to 
converge as t→ 0 is Laplace transformation defined by the L operator as follows: 
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It transforms Eq. 1 and the simple permeation boundary conditions to: 
 

 
Figure 1: Dimensionless mass permeated vs. dimensionless time; simple permeation. 
Solid line: Eq. 4; broken line: steady-state asymptote; filled symbols: Eq. 4 truncated 
after lead term in series; unfilled symbols: lead in term in Eq. 10. 
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The solution in s-space is: 
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and so: 
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Derivation of an early-time solution requires the following preliminary manipulation: 
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Inversion now yields the following early-time solution: 
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Figure 1 also compares results based on Eq. 4, Eq. 4 truncated after the lead term in its 
series, and Eq. 10 truncated after the lead term in its series. Together, the truncated early 
and long-time solutions accurately model all stages of permeation. 

 
When external mass transfer resistance is significant, the x = L condition becomes: 
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The long-time solution is then: 
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Figure 2: Dimensionless mass permeated vs. dimensionless time; permeation with 
downstream mass transfer resistance. Solid lines: Eq. 12;  darkened symbols: Eq. 13; 
unfilled symbols: Eq. 12 truncated after the lead term in series. Broken line: B = ∞ (Eq. 
4); upper curve and symbols: B = 5; middle curve and symbols: B = 1; lower curve and 
symbols: B = 0.2. 
 
The lead term of the early-time solution is: 
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Figure 2 compares results based on Eq. 4, Eq. 12, Eq. 12 truncated after the lead term in 
its series, and Eq. 13. The truncated early-time series is quite accurate over substantial 
dimensionless times.  
 
Modelling permeation in composite membranes (laminates) is complicated by the need 
to enforce Eq. 2 separately for each layer. Diffusion of a single species in a composite 
of membranes A and B, with negligible external mass transfer resistance and constant 
equilibrium distribution coefficient m, is governed by:  
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The Laplace-domain solution is: 
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Figure 3: Dimensionless mass permeated vs. dimensionless time; composite 
permeation. LB/LA=2, DB/DA=3.5. Solids curves: numerical inversion of Eq. 16; 
squares: Eq. 17. Upper data sets: m = 2; lower data sets: m = 0.5. 
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The lead term in the early-time solution is: 
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Figure 3 compares results based on Eq. 17 and on exact numerical inversion of Eq. 16 
(ScientistR, Micromath). The early-time solution is again accurate up to large values of 
τ; this is particularly noteworthy because there is no simple long-time solution. 
 
Early-Time Sorption Analysis 
 
 Finally, to illustrate the versatility of the early-time approach, we consider 
simple sorption governed by Eq. 1, subject to: 
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Figure 4: Dimensionless mass uptake vs. dimensionless time in simple sorption. Solid 
line: Eq. 18; shaded squares: first term in Eq. 19; blackened boxes: Eq. 18 truncated 
after the lead term in the series. 
 
 
The long-time solution is: 

( )

( )

2 22n 1 t

t2 2
0 x 0n 0

M 8 e C1       M D dt,  M lim M 
M x2n 1

∞ − + π τ

∞ →∞
=∞ =

⎡ ⎤∂⎛ ⎞= − ≡ =⎢ ⎥⎜ ⎟∂π ⎝ ⎠+ ⎣ ⎦
∑ ∫         (18) 

 
The early-time solution is: 
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Figure 4 compares results based on Eq. 18, Eq. 18 truncated after the lead term in its 
series, and simply the first term in Eq. 19 (in light of that term, the abscissa was fixed as 
the square root of τ). As with permeation, the truncated early and long-time solutions 
suffice to accurately model all stages of sorption. 
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